麻豆淫院

December 20, 2007

The Quest for a New Class of Superconductors

This photo shows a magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. A persistent electric current flows on the surface of the superconductor, effectively forming an electromagnet that repels the magnet. The expulsion of an electric field from a superconductor is known as the "Meissner Effect." Credit: Los Alamos National Laboratory
× close
This photo shows a magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. A persistent electric current flows on the surface of the superconductor, effectively forming an electromagnet that repels the magnet. The expulsion of an electric field from a superconductor is known as the "Meissner Effect." Credit: Los Alamos National Laboratory

Fifty years after the Nobel-prize winning explanation of how superconductors work, a research team from Los Alamos National Laboratory, the University of Edinburgh and Cambridge University are suggesting another mechanism for the still-mysterious phenomenon.

In a review published today in Nature, researchers David Pines, Philippe Monthoux and Gilbert Lonzarich posit that superconductivity in certain materials can be achieved absent the interaction of electrons with vibrational motion of a material鈥檚 structure.

The review, 鈥淪uperconductivity without phonons,鈥 explores how materials, under certain conditions, can become superconductors in a non-traditional way. Superconductivity is a phenomenon by which materials conduct electricity without resistance, usually at extremely cold temperatures around minus 424 degrees Fahrenheit (minus 253 degrees Celsius)鈥攖he fantastically frigid point at which hydrogen becomes a liquid. Superconductivity was first discovered in 1911.

A newer class of materials that become superconductors at temperatures closer to the temperature of liquid nitrogen鈥攎inus 321 degrees Fahrenheit (minus 196 degrees Celsius)鈥攁re known as 鈥渉igh-temperature superconductors.鈥

A theory for conventional low-temperature superconductors that was based on an effective attractive interaction between electrons was developed in 1957 by John Bardeen, Leon Cooper and John Schrieffer. The explanation, often called the BCS Theory, earned the trio the Nobel Prize in 麻豆淫院ics in 1972.

The net attraction between electrons, which formed the basis for the BCS theory, comes from their coupling to phonons, the quantized vibrations of the crystal lattice of a superconducting material; this coupling leads to the formation of a macroscopically occupied quantum state containing pairs of electrons鈥攁 state that can flow without encountering any resistance, that is, a superconducting state.

Get free science updates with Science X Daily and Weekly Newsletters 鈥 to customize your preferences!

鈥淢uch like the vibrations in a water bed that eventually compel the occupants to move together in the center, phonons can compel electrons of opposite spin to attract one another, says Pines, who with Bardeen in 1954, showed that this attraction could win out over the apparently much stronger repulsion between electrons, paving the way for the BCS theory developed a few years later.

However, according to Pines, Monthoux and Lonzarich, electron attraction leading to superconductivity can occur without phonons in materials that are on the verge of exhibiting magnetic order鈥攊n which electrons align themselves in a regular pattern of alternating spins.

In their Review, Pines, Monthoux and Lonzarich examine the material characteristics that make possible a large effective attraction that originates in the coupling of a given electron to the internal magnetic fields produced by the other electrons in the material. The resulting magnetic electron pairing can give rise to superconductivity, sometimes at substantially higher temperatures than are found in the materials for which phonons provide the pairing glue.

Among the classes of materials that appear capable of superconductivity without phonons are the so-called heavy electron superconductors that have been studied extensively at Los Alamos since the early 1980鈥檚, certain organic materials, and the copper oxide materials that superconduct at up to twice the temperature at which nitrogen liquefies.

鈥淚f we ever find a material that superconducts at room temperature鈥攖he 鈥楬oly Grail鈥 of superconductivity鈥攊t will be within this class of materials,鈥 says Pines. 鈥淭his research shows you the lamp post under which to look for new classes of superconducting materials.鈥

Link:

Source: Los Alamos National Laboratory

Load comments (5)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.