麻豆淫院


Gravity waves could hold key to supersymmetry

(麻豆淫院Org.com) -- "In Geneva," Anupam Mazumdar tells 麻豆淫院Org.com, "there is a big effort to discover supersymmetry particles at the Large Hadron Collider. But that is not the only way to find these particles. We should also be able to see supersymmetry in the sky through the observation of gravitational waves."

Mazumdar, a physicist at Lancaster University in Britain, worked with Alex Kusenko at the University of California, Los Angeles to simulate what kind of frequency distribution would result from the fragmentation of unstable scalar condensate. The two say that a number of devices, including the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), the Laser Interferometer Space Antenna (LISA) and the Big Bank Observer (BBO), would be able to detect the gravitational waves they describe in 鈥淕ravitational waves from fragmentation of a primordial scalar condensate into Q-balls,鈥 which has been accepted for publication in 麻豆淫院ical Review Letters.

Supersymmetry is speculated to go beyond the standard model of physics to introduce particles that solve some of the problems that cannot be solved using only the particles that have been observed thus far. In supersymmetry, the standard particles we are familiar with have superpartners that differ from the standard by half a unit of spin. For example, the superpartners of standard model fermions are s-fermions.

鈥淭he gravity wave is fundamental to theory from Einstein,鈥 Mazumdar says. 鈥淏ut we have not yet seen it in the frequencies described. However, primordial inflation is one of the many cosmic sources that could produce these waves.鈥 The gravitational waves described by Mazumdar and Kusenko begin as a condensate formed in the early universe of s-fermions.

鈥淎t a certain point,鈥 Mazumdar explains, 鈥渢he condensate starts oscillating due to the presence of scalar, s-fermion, masses, whose masses are roughly determined by the scale of supersymmetry breaking. Due to the inherent nature of quantum corrections the condensate is not absolutely stable and fragments during the coherent oscillations. The fragmentation process leads to the formation of non-topological solitons, known as Q-balls. Since the fragmentation process is so violent and anisotropic, it excites gravity waves.鈥 These waves, he says, have an amplitude and frequency detectable by LIGO.

Mazumdar says that, while many hope to find evidence of supersymmetry when the LHC is fully operational, it is not the only place where one can look for the signs of supersymmetric particles. Besides, he points out, evidence of supersymmetry may not be found at the LHC. Looking to the cosmos, then, would be another option. This is where the sophisticated cosmological observation devices 鈥 especially LIGO 鈥 come in. 鈥淥ur model shows frequencies exactly where LIGO is sensitive,鈥 he says. 鈥淲e also show a place where the frequency would be distinguishable from binaries, black holes and pulsars, which would also form gravity waves.鈥

鈥淭he frequency we show has a broader spectrum, and its uniqueness would provide evidence of this s-fermion condensate,鈥 he continues. 鈥淪uch a condensate could have also inflated the primordial universe, while explaining the origin of tiny perturbations in the cosmic microwave background radiation.鈥

However, Mazumdar admits, it may take some time to detect these waves and take the observations. 鈥淲e鈥檙e hoping to detect these in four to five years at LIGO,鈥 he says. 鈥淪cientists may find evidence of supersymmetry at the LHC, but we are hoping to find links to it in cosmology.鈥

Article reference: Kusenko, Alexander and Anupam, Mazumdar 鈥淕ravitational waves from fragmentation of a primordial scalar condensate into Q-balls鈥 .

Copyright 2007 麻豆淫院Org.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of 麻豆淫院Org.com.

Citation: Gravity waves could hold key to supersymmetry (2008, November 5) retrieved 7 May 2025 from /news/2008-11-gravity-key-supersymmetry.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Experiment captures atoms in free fall to look for gravitational anomalies caused by dark energy

0 shares

Feedback to editors