麻豆淫院

March 26, 2010

Faster, cheaper chips from space technology

Italian company Media Lario transfers XMM-Newton mirror technology to EUV lithography for the production of integrated semiconductor circuits, commonly known as microchips. Credits: Media Lario Technologies
× close
Italian company Media Lario transfers XMM-Newton mirror technology to EUV lithography for the production of integrated semiconductor circuits, commonly known as microchips. Credits: Media Lario Technologies

(麻豆淫院Org.com) -- Our world is full of integrated semiconductor circuits, commonly known as microchips. Today you find them in computers, cars, mobile phones and in almost every electrical device. Technology from ESA?s XMM-Newton space telescope will make these chips much smaller, faster and cheaper.

The circuits are etched into today鈥檚 microchips by ultraviolet light.

The demand for faster and more powerful chips requires the use of extreme ultraviolet (EUV). Much smaller semiconductor circuits can be produced, leading to microchips up to 100 times faster and to with up to 100 times more storage capacity.

However, conventional lenses cannot focus EUV rays. Instead, special 鈥榞razing-incidence mirrors鈥 must be used, and it is here that space technology comes in.

Italian company Media Lario Technologies has developed grazing-incidence mirrors to make chips by extending the technology originally used for producing the advanced telescope mirrors for Europe鈥檚 XMM-Newton X-ray observatory.

Space telescope produced by highly accurate electroforming technology

Since 1999, XMM-Newton鈥檚 telescope has been delivering stunning X-ray images of our Universe.

This is above all due to its exceptional mirrors - the most sensitive ever developed - which total 200 sq m covered by ultra-smooth gold. Statistically, no stick out from the surface by more than their own size.

Media Lario was selected in 1995 to develop these remarkable mirrors. They had to optimise and improve their electroforming and production technology to deliver the modules with the outstanding performance required by ESA.

By completing this 鈥渁lmost impossible mission鈥 in 1998, as the then ESA Director of Science, Prof. Roger Bonnet, described it some years earlier, Media Lario was recognised worldwide for the company鈥檚 leading-edge nickel electroforming replication technology.

Get free science updates with Science X Daily and Weekly Newsletters 鈥 to customize your preferences!

XMM Newton technology spinoff produces faster chips

鈥淎fter the successful production of the X-ray telescope for ESA鈥檚 XMM-Newton spacecraft, Media Lario continued to extend the technology and searched for advanced applications and markets for this unique capability,鈥 explains Giovanni Nocerino, Media Lario President and CEO.

鈥淎dvanced EUV lithography for chip production needed an efficient mechanism for collecting and transporting the EUV light. A unique Media Lario design, which is the 鈥榤icroscope鈥 configuration of the , turned out to be an ideal solution for the EUV collector problem for lithography.鈥

鈥淭he great news is that the semiconductor equipment industry, and consequently semiconductor devices, are making a significant transition to EUV lithography and Media Lario's gracing incidence collector mirror is a key-enabling subsystem of this transition.鈥

Media Lario鈥檚 extreme ultraviolet (EUV) collector mirrors for semiconductor lithography are based on the original investment in the technologies and competences needed to produce the optical mirrors for ESA鈥檚 XMM-Newton spacecraft. The EUV collector will be used in the production of the next-generation of faster and smaller integrated semiconductor circuits. Credits: Media Lario Technologies
× close
Media Lario鈥檚 extreme ultraviolet (EUV) collector mirrors for semiconductor lithography are based on the original investment in the technologies and competences needed to produce the optical mirrors for ESA鈥檚 XMM-Newton spacecraft. The EUV collector will be used in the production of the next-generation of faster and smaller integrated semiconductor circuits. Credits: Media Lario Technologies

The EUV collector mirrors for semiconductor lithography are based on the original investment in the technologies and competences needed for XMM-Newton. Highly reflective thin optical mirrors (0.4 mm to 1 mm) can now be produced, with ultra-smooth surfaces having a roughness of less than 0.4 nm which is like a 250-thousandth the width of an average human hair.

Within the next year, equipment with Media Lario鈥檚 EUV mirrors is planned to enter pre-production, prior to being used in mass chip manufacturing.

鈥淢edia Lario is now the principal developer of such EUV collector mirrors and we are working with Nikon, Canon and ASML, the world鈥檚 leading providers of lithography systems for the semiconductor industry,鈥 says Giovanni Nocerino.

According to Frank M. Salzgeber, Head of ESA's Technology Transfer Programme Office, 鈥渢his is a great example of how a science mission generates leading-edge technology, which is then used for the benefit of daily applications on Earth.鈥

The European space industry has built up an impressive portfolio of technologies and knowhow. Since 1991, ESA鈥檚 Technology Transfer Programme, with its European-wide network of technology brokers, has promoted the use of these technologies beyond space systems. This has provided many innovative solutions for non-space products and services that improve our daily lives.

Provided by European Space Agency

Load comments (1)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.