麻豆淫院


Math meets music

Geometry is the force that shapes both the sound of music and the novel research of Florida State University composer-theorist Clifton Callender, whose work explores and maps the mathematics of musical harmony.

Now, Callender鈥檚 latest article on that mind-bending research has earned him the inaugural David Kraehenbuehl Prize from the Journal of Theory (JMT), the oldest and most distinguished music-theory journal now published in the United States.

In its citation of his work, the selection committee sings the praises of its first honoree, noting 鈥淐allender develops novel ideas in imaginative ways, harnesses a sizable mathematical apparatus with technical aplomb, and presents his work with exemplary elegance and clarity.鈥

Named for the founding editor of the JMT, the Kraehenbuehl Prize will be awarded biennially to an article judged the journal鈥檚 best submission from a not-yet-tenured scholar.

The theory described in Callender鈥檚 Kraehenbuehl Prize-winning paper (鈥淐ontinuous Harmonic Spaces鈥) complements the 鈥済eometric music theory鈥 he formulated at Florida State three years ago in collaboration with researchers from Yale and Princeton universities. The 2008 paper they coauthored, 鈥淕eneralized Voice-Leading Spaces,鈥 was featured in the journal Science.

But while Callender鈥檚 present work is related to that earlier milestone, it also breaks new ground and draws upon different branches of .

鈥淔or 鈥楥ontinuous Harmonic Spaces鈥 I used a mathematical technique called the continuous Fourier transform to investigate the aural quality of individual chords and the way in which those qualities differ from one chord to another,鈥 said Callender, an associate professor of composition in the Florida State University College of Music. 鈥淚t is after all a chord鈥檚 innate sound or 鈥榝eel鈥 that makes it perfectly suited for depicting, say, a murderous turning point in a Hitchcock thriller, but not at all appropriate for an uplifting song.鈥

While the language of music theory may sound a little strange to the uninitiated, for Callender those continuous voice-leading and harmonic spaces are inextricably linked to the old, familiar tunes.

鈥淎s we know, some chords sound more similar than others,鈥 he said. 鈥淔or instance, while there are several different types of chords in the Beatles鈥 鈥楢ll You Need is Love,鈥 all of these chords have a lot in common. Certainly they are more similar to each other than to the bebop-inspired chords of Jimi Hendrix鈥 鈥楶urple Haze,鈥 or the even more dissimilar dissonant stabs in Bernard Herrmann鈥檚 score for the 1960 film 鈥楶sycho.鈥

鈥淚magine these and other chords as existing in a multi-dimensional harmonic space in which similar-sounding chords are located close together and dissimilar chords are far apart,鈥 Callender said. 鈥淢usic theorists, including my FSU colleague Michael Buchler, have developed ways to map this space and measure the similarity of chords built on a limited number of 鈥榥ote types,鈥 the twelve notes within a single octave.

鈥淏ut in 鈥楥ontinuous Harmonic Spaces鈥 I map all possible chords 鈥撯 including those that do not belong to standard Western tuning because they contain notes that lie in between adjacent keys on the piano. I felt it was essential to do this for two reasons.

鈥淔irst, because the music of many contemporary composers and of non-Western cultures is not limited to the standard Western tuning,鈥 he said.

鈥淎nd, second, because by looking at the most general case of all possible chords, we can better understand the nature of harmonic spaces and shed light on the relationships and similarities between more common Western .鈥

Callender is a composer who practices what he theorizes. The notion of 鈥榗ontinuous spaces鈥 is important in several of his compositions, including 鈥淢etamorphoses,鈥 in which the rhythms and tempos change in a continuous, gradual manner. And he currently is working on 鈥淪pira mirabilis,鈥 a set of music canons (or rounds) in which a given melody can be played against itself in an infinite number of ways.

鈥淚t is gratifying,鈥 he said, 鈥渘ot only to be the first Kraehenbuehl Prize recipient but also to be a part of a community of musician-scholars who are all pursuing such interesting, cutting-edge research at the intersection of music and mathematics.鈥

Citation: Math meets music (2011, March 25) retrieved 9 June 2025 from /news/2011-03-math-music.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Modern society made up of all types

0 shares

Feedback to editors