麻豆淫院


Good vibrations for future quantum computers

Good vibrations for future quantum computers
Top of a quantum dot 漏 Alexander Kleinsorge

(麻豆淫院Org.com) -- The enigmatic quantum dot is the basic building block for quantum computers. EPFL physicists have developed a new theory which shows that dot symmetry is enough to account for most of their intriguing optical properties.

麻豆淫院icists have created a pyramidal dot that鈥檚 just shy of 100 nanometers high, about 200 atoms on a side. By applying voltage to this miniature structure, the scientists have created a device that can emit light, which could then be used in future components of quantum computers. But the road to this new kind of computing is still long, particularly because determining the of these is a complicated and computationally intensive endeavor. Marc-Andr茅 Dupertuis and his team from EPFL鈥檚 Laboratory of 麻豆淫院ics of Nanostructures have proposed, and observationally verified, a new physical theory that not only reduces the time needed to perform these calculations, but also, and above all, allows us simply to better understand the nature of these strange objects.

When electrical charges are injected into quantum dots, they start to vibrate. This is what physicists call the wave function, which in this case vibrates a bit like the head of a drum. One would think that simulating these vibrations would be extremely complex, but Dupertuis realized that the wave behavior, and thus the light emitted by the quantum dot, could be determined sufficiently by . Because of this, the calculation could be simplified using a familiar mathematical tool known as group theory.

Better understanding on the back of a napkin

The strength of this approach is its relative simplicity. The physicists can deduce the optical properties of quantum dots based on symmetries that they suspect are there, and then verify the presence of the symmetries experimentally. 鈥淐alculations that up to now required supercomputers can now be replaced by other calculations that can be done on the back of a napkin,鈥 Dupertuis says.

Dupertuis had to overcome a serious difficulty in order to come up with the theory 鈥 he had to be able to simplify it sufficiently, while still taking into account the strange properties that govern the quantum world. Imagine a cake cut into symmetric slices, but whose edges don鈥檛 all look the same; you鈥檇 have to arrange the slices in a specific order to put the cake back together again. This is the kind of mathematical and quantum challenge that the physicist is tackling.

A promising advance

This obstacle aside, the method is very promising. 鈥淯sing proven observational methods, we can precisely deduct the exact symmetry of the quantum dot, as well as the properties of the electrical charge it contains and even what kind of photons it will emit.鈥 This information will be useful in designing new devices that could be used in quantum computers.

More information: Symmetries and the polarized optical spectra from exciton complexes in quantum dots, M. A. Dupertuis, K. F. Karlsson, D. Y. Oberli, et al., 麻豆淫院ical Review Letters, 06.09.2011

Provided by Ecole Polytechnique Federale de Lausanne

Citation: Good vibrations for future quantum computers (2011, September 7) retrieved 10 August 2025 from /news/2011-09-good-vibrations-future-quantum.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers fabricate first large-area, full-color quantum dot display

0 shares

Feedback to editors