Bristly particles could be boon for powerplants

Sometimes, a simple decision to try something unconventional can lead to a significant discovery.
A well-known method of making heat sinks for electronic devices is a process called sintering, in which powdered metal is formed into a desired shape and then heated in a vacuum to bind the particles together. But in a recent experiment, some students tried sintering copper particles in air and got a big surprise.
Instead of the expected solid metal shape, what they found was a mass of particles that had grown long whiskers of oxidized copper. 鈥淚t was sort of serendipitous,鈥 says Kripa Varanasi, d鈥橝rbeloff Assistant Professor of Mechanical Engineering at MIT. 鈥淲e got this crazy stuff, particles covered in nanowires,鈥 he says.
The resulting process could turn out to be an important new method for manufacturing structures that span a range of sizes down to a few nanometers (billionths of a meter) in size. 鈥淵ou go in one step from solid spherical powder to very complex structures,鈥 says Christopher Love, a mechanical engineering graduate student who is lead author on the paper. 鈥淭he process is very simple, and the structures are durable,鈥 he says. These new structures could be used for managing the flow of heat in various applications ranging from powerplants to the cooling of electronics.
Not only were the particles covered with fine wires, but the abundance of the wires turned out to be dependent on the size of the original copper particles. 鈥淲e are the first to observe a size-dependent oxidation in copper,鈥 Varanasi says. That means researchers can easily synthesize porous structures at various scales, in bulk, by selecting the particles they start out with: Particles smaller than a certain size sinter, while larger particles grow nanowires.
The discovery is reported in a paper being published in the journal RSC Nanoscale. In addition to Varanasi and Love, the paper鈥檚 authors are mechanical engineering graduate student J. David Smith and postdoc Yuehua Cui of the Laboratory for Manufacturing and Productivity.
Such hierarchical structures can be very effective for thermal management, cooling everything from microprocessors to the boilers of huge powerplants. They might even prove useful in engineered geothermal power, which holds great promise as a system for providing clean, renewable power. Because the resulting structures are so easily controlled, 鈥測ou can optimize them to control phenomena taking place at different length and time scales,鈥 Varanasi says.
While the growth of nanowires on bulk copper sheets had been observed before, Varanasi says, this is the first time it has been observed across a variety of size scales at once, and the first time the process has been analyzed and explained. 鈥淭here have been a bunch of different theories about how these nanowires grow,鈥 he says. But now, 鈥渢his paper established thoroughly鈥 what the mechanism is for copper particles: The bristles grow outward through diffusion, leaving the particles hollow in the middle as the metal migrates outward.
The team is now testing the same process with other materials. For example, if it works with zirconium 鈥 the metal now used as the cladding for fuel rods in nuclear reactors 鈥 it might help improve heat transfer. In a nuclear reactor, where this process drives turbines and produces power, such an advance could boost the reactors鈥 overall efficiency.
In addition to thermal management, these results could help to optimize certain catalytic processes, Varanasi says.
Suresh Garimella, a professor of mechanical engineering at Purdue University who was not involved in this research, says the 鈥渟imple and potentially cost-effective nature of the method鈥 for growing copper nanowires 鈥渕akes the findings significant,鈥 with potential applications including catalysis and thermal management.
Brent Segal, chief technologist at Lockheed Martin Nanosystems in Billerica, Mass., says this is 鈥渟ignificant work on controlling the electrical properties and thermal properties鈥 of materials, and possibly their optical properties as well. Such control, from the microscopic to the nanoscopic scale 鈥 a thousand-fold difference in size 鈥 鈥渉as not been seen before鈥 in a single process, he says.
Upon seeing the team鈥檚 description of this new technique, Segal says, 鈥淵ou immediately think, 鈥業 want to go try 75 other materials鈥欌 to see if they work in a similar way. 鈥淚 think 100 different labs around the country will try everything they鈥檝e got on the shelf鈥 using this technique, he adds.
The work was supported by the MIT Deshpande Center, a DARPA Young Faculty Award, the MIT Energy Initiative, and a National Science Foundation graduate research fellowship.
This story is republished courtesy of MIT News (), a popular site that covers news about MIT research, innovation and teaching.
Provided by Massachusetts Institute of Technology