麻豆淫院

November 7, 2011

Research sparks record-breaking solar cell performances

Contrary to conventional scientific wisdom, the key to solar cell efficiency is not absorbing more photons but emitting more photons. (Image courtesy of DOE NREL)
× close
Contrary to conventional scientific wisdom, the key to solar cell efficiency is not absorbing more photons but emitting more photons. (Image courtesy of DOE NREL)

(麻豆淫院Org.com) -- Theoretical research by scientists with the U.S. Department of Energy (DOE)鈥檚 Lawrence Berkeley National Laboratory (Berkeley Lab) has led to record-breaking sunlight-to-electricity conversion efficiencies in solar cells. The researchers showed that, contrary to conventional scientific wisdom, the key to boosting solar cell efficiency is not absorbing more photons but emitting more photons.

鈥淎 great solar cell also needs to be a great Light Emitting Diode,鈥 says Eli Yablonovitch, the Berkeley Lab electrical engineer who led this research. 鈥淭his is counter-intuitive. Why should a solar cell be emitting photons? 聽What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the it can produce.鈥

Yablonovitch holds joint appointments with Berkeley Lab鈥檚 Materials Sciences Division and the University of California (UC) Berkeley, where he is the James and Katherine Lau Chair in Engineering, and also directs the NSF Center for Energy Efficient Electronics Science. He is the corresponding author of a paper describing this work for the Journal of PhotoVoltaics titled 鈥淚ntense Internal and External Fluorescence as Approach the Shockley-Queisser Efficiency Limit.鈥

Co-authoring this paper with Yablonovitch were Owen Miller of Berkeley Lab, and Sarah Kurtz, at the National Renewable Energy Laboratory.

In their paper, Yablonovitch, Miller and Kurtz describe how 聽external fluorescence is the key to approaching the theoretical maximum efficiency at which a solar cell can convert sunlight into electricity. This theoretical efficiency, called the Shockley-Queisser efficiency limit (SQ Limit), measures approximately 33.5-percent for a single p-n junction solar cell. This means that if a solar cell collects 1,000 Watts per square meter of solar energy, the most electricity it could produce would be about 335 Watts per square meter.

Get free science updates with Science X Daily and Weekly Newsletters 鈥 to customize your preferences!

Calculations by Miller, who is a member of Yablonovitch鈥檚 research group, showed that the semiconductor gallium arsenide is capable of reaching the SQ Limit. Based on this work, a private company co-founded by Yablonovitch, Alta Devices Inc., has been able to fabricate solar cells from gallium arsenide that have achieved a record conversion efficiency of 28.4 percent.

Thin film solar cells fabricated from gallium arsenide have achieved a record sunlight-to-electricity conversion efficiency of 28.4 percent. (Image courtesy of Alta Devices, Inc.)
× close
Thin film solar cells fabricated from gallium arsenide have achieved a record sunlight-to-electricity conversion efficiency of 28.4 percent. (Image courtesy of Alta Devices, Inc.)

鈥淥wen Miller provided an accurate theory on how to reach the SQ Limit that for the first time included external fluorescence efficiency,鈥 Yablonovitch says. 鈥淗is calculations for gallium arsenide showed that external fluorescence provides the voltage boost that Alta researchers subsequently observed.鈥

Solar or photovoltaic cells represent one of the best聽possible technologies for providing an absolutely clean and virtually inexhaustible source of electricity. However, for this dream to be realized, solar cells must be able to efficiently and cost-competitively convert sunlight into electricity. They must also be far less expensive to make.

The most efficient solar cells in commercial use today are made from monocrystalline silicon wafers and typically reach a conversion efficiency of about 23-percent. 聽High grade silicon is an expensive semiconductor but is a weak collector of photons. Gallium arsenide, although even more expensive than silicon, is more proficient at absorbing photons, which means much less material is needed to make a solar cell.

鈥淕allium arsenide absorbs photons 10,000 times more strongly than silicon for a given thickness but is not 10,000 times more expensive,鈥 says Yablonovitch. 鈥淏ased on performance, it is the ideal material for making solar cells.鈥

Past efforts to boost the conversion efficiency of solar cells聽 focused on increasing the number of photons that a cell absorbs. Absorbed sunlight in a solar cell produces electrons that must be extracted from the cell as electricity. Those electrons that are not extracted fast enough, decay and release their energy. If that energy is released as heat, it reduces the solar cell鈥檚 power output. Miller鈥檚 calculations showed that if this released energy exits the cell as external fluorescence, it would boost the cell鈥檚 output voltage.

鈥淭his is the central counter-intuitive result that permitted efficiency records to be broken,鈥 Yablonovitch says.

As Miller explains, 鈥淚n the open-circuit condition of a solar cell, electrons have no place to go so they build up in density and, ideally, emit external fluorescence that exactly balances the incoming sunlight. As an indicator of low internal optical losses, efficient external fluorescence is a necessity for approaching the SQ Limit.鈥

Using a single-crystal thin film technology developed earlier by Yablonovitch, called 鈥渆pitaxial liftoff,鈥 Alta Devices was able to fabricate solar cells based on gallium arsenide that not only smashed previous solar conversion efficiency records, but can be produced at well below the cost of any other solar cell technology. Alta Devices expects to have solar panels on the market within a year.

鈥淭he SQ Limit is still the foundation of solar cell technology,鈥 says Yablonovitch. 鈥淗owever, the physics of light extraction and external fluorescence are clearly relevant for high performance solar cells.鈥

Yablonovitch believes that the theoretical work by he and his co-authors, in combination with the performance demonstrations at Alta Devices, could dramatically change the future of solar cells.

鈥淲e鈥檙e going to be living in a world where solar panels are very cheap and very efficient,鈥 Yablonovitch says.

More information: For more information about the research of Eli Yablonovitch, visit the Website at

Load comments (35)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.