Âé¶¹ÒùÔº

April 12, 2012

Engineers put five-story building on seismic shake table to test for earthquake, fire readiness

This is an overall shot of the five-story building that will be tested at the Englekirk Center at UC San Diego starting April 16. Credit: Jacobs School of Engineering at UC San Diego
× close
This is an overall shot of the five-story building that will be tested at the Englekirk Center at UC San Diego starting April 16. Credit: Jacobs School of Engineering at UC San Diego

What happens when you put a fully equipped five-story building, which includes an intensive care unit, a surgery suite, piping and air conditioning, fire barriers and even a working elevator, through series of high-intensity earthquakes?

Structural engineers at the University of California, San Diego are about to find out during a two-week series of tests conducted on the world's largest outdoor shake table at the Englekirk Structural Engineering Center. The overarching goal of the $5 million project, which is supported by a coalition of government agencies, foundations and industry partners, is to ascertain what needs to be done to make sure that high-value buildings, such as hospitals and data centers, remain operational after going through an earthquake. Researchers also will assess whether the building's fire barriers have been affected by the shakes.

Throughout the two weeks of testing, engineers will monitor the building's performance with more than 500 high-fidelity sensors and more than 70cameras that will record the movement of key elements and components inside the building.

"What we are doing is the equivalent of giving a building an EKG to see how it performs after an earthquake and a post-earthquake fire," said Professor Tara Hutchinson of the Jacobs School of Engineering at UC San Diego, the project's lead principal investigator.

Hutchinson is working with a multi-disciplinary team of academics and industry representatives, including Jacobs School Professors Jose Restrepo and Joel Conte.

The two-week series of experiments will feature a number of firsts:

"The tests will have a significant impact on how engineers model the nonstructural components of a building and how they calculate what forces they need to withstand during an earthquake," Hutchinson said. "We can improve our understanding of their performance and accuracy of design predictions by using data generated from tests such as these," she said. "We are hoping that our work will help prevent unnecessary loss of life and loss of property."

Get free science updates with Science X Daily and Weekly Newsletters — to customize your preferences!

Researchers also hope to better understand what needs to be done to make sure medical centers remain operational after a temblor. The building's top two floors are outfitted with a surgery suite and , two components of the project supported by the California Seismic Safety Commission, which investigates earthquakes and recommends to the governor and state legislature policies that will reduce earthquake risks.

Graduate student Elide Pantoli checks one of the sensors installed on the five-story building to be tested starting April 16. Credit: Jacobs School of Engineering at UC San Diego
× close
Graduate student Elide Pantoli checks one of the sensors installed on the five-story building to be tested starting April 16. Credit: Jacobs School of Engineering at UC San Diego

Likewise, the fire-related data will help engineers model the fire performance of buildings damaged in earthquakes. "Knowing how fire protection systems might fail in an earthquake, and how the fire and smoke might spread, will allow us to design more resilient systems and provide better protection to people, property and mission," said Brian Meacham, associate professor of fire protection engineering at WPI.

Measuring the building's performance

Sensors will be placed strategically throughout the building to measure how components perform. For example, 230 accelerometers will measure how fast the building and its nonstructural components moved during the simulated temblors. In addition, 160 sensors, including high resolution GPS devices, will measure the relative displacement between two points, while 50 strain gauges will measure the deformation of the rebar that are buried in the building's concrete foundations. About 80 cameras will be focused on the building, with most of these distributed within the interior of the building to monitor the nonstructural elements during the tests.

Simulated earthquakes

During the two weeks of testing, researchers will put the buildings through a variety of simulated temblors, using motions that have been recorded from:

On April 17, the building will be subjected to motions recorded during the 1994 Northridge and 2010 Chile earthquakes.

Other components

During this complex series, researchers also will be investigating the performance of nonstructural systems, which provide evacuation support for the occupants of a building. "In the 2011 Christchurch earthquake in New Zealand, and in other past earthquakes, stairs have failed in some buildings," Restrepo pointed out. Scientists hope the tests will help find ways to keep elevators and stairs safe and functional after a major temblor.

Other components of the project include and laboratory equipment on the third floor. The five-story building also is outfitted with two different kinds of façade: the two top floors consist of heavy, precast concrete panels, while the three lower floors are covered with flexible metal studs overlaid with gypsum board and light-weight stucco, with the studs constructed using a multi-floor spanning strategy known as a balloon framing.

Fire testing

During the seismic tests, researchers from WPI, led by Meacham, will regularly inspect passive fire protection components, including doors, ceiling systems, partition walls and fire resistant materials that seal openings in walls, to see how they are faring. If these systems are compromised, they could allow flames and smoke to spread and air to enter a room to feed a fire. They will also inspect the condition of active fire suppression systems, particularly sprinklers.

Detail illustrations and layout Zina Deretsky, National Science Foundation, Building illustrations UC San Diego Department of Structural Engineering.
× close
Detail illustrations and layout Zina Deretsky, National Science Foundation, Building illustrations UC San Diego Department of Structural Engineering.

In mid-May, following the two weeks of seismic testing, the WPI team will perform two days of fire testing on the third floor of the building. They will ignite pans of heptane, a liquid fuel that burns hot enough to simulate full burning within a closed space. Using sensors that record temperature and smoke movement, researchers will assess how damage from the simulated earthquakes affect the ability of the active and passive fire protection systems to contain fires and prevent the spread of smoke. Though fires that take place after earthquakes are a well-known and serious hazard, very little is known about the performance of fire protection systems in earthquakes, Meacham said. The data gathered through this research could help inform more effective fire codes. In addition, this study will provide a unique opportunity to simultaneously observe the effects of shaking and fire on building systems, which could lead to new multi-hazard computer models that could help architects and engineers design safer buildings.

Meanwhile, Hutchinson, Restrepo, Conte and their colleagues will spend the following year analyzing data from the project before publishing their complete findings. The team also includes academic partners Ken Walsh of San Diego State University, Claudia Marin, of Howard University and Brian Meacham of Worcester Polytechnic University.

The project is sponsored by the National Science Foundation, the Network for Engineering Simulation, the California Seismic Safety Commission, the Charles Pankow Foundation, the Englekirk Advisory Board, the Society of Fire Protection Engineers and a large consortium of U.S. and international industry partners.

More information:

Load comments (0)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.