PVA Tepla, imec demonstrate 3D through-silicon via (TSV) void detection using GHz scanning acoustic microscopy

Imec and PVA Tepla present breakthrough results in the detection of TSV voids in 3D stacked IC technology. After having applied Scanning Acoustic Microscopy to temporary wafer (de)bonding inspection, they successfully used new advanced GHz SAM technology to detect TSV voids at wafer-level after TSV Copper plating. Together, they will continue to investigate the applicability of high-frequency scanning acoustic microscopy for non-destructive submicron void detection.

The initial focus of the collaboration was on developing aimed at detecting voids after temporary , allowing for proper rework of 3D wafers. Temporary wafer (de)bonding and thin wafer handling remains challenging for 3D stacked IC technology. The development of interface and voids during the temporary bonding process has a detrimental impact on the subsequent wafer thinning process steps, affecting the wafer thinning performance as well as long-term tool stability and performance. PVA Tepla and imec have developed an automated foup-to-foup, wafer-level process based on 200MHz Scanning Acoustic Microscopy (SAM) using Tepla's AutoWafer 300 tool.

After demonstrating non-destructive detection of interface particles and voids, imec used PVA Tepla's high-resolution capability GHz frequency SAM tool to successfully detect voids in TSVs of 5碌m diameter and 50碌m depth, immediately after plating. Future work will concentrate on further refining the process and implementing GHz SAM capability to increase the spatial detection resolution. Moreover, and PVA Tepla will investigate the applicability of GHz SAM to detect submicron voids in TSV and to investigate other aspects related to 3D-technology such as bump connection quality.

Provided by IMEC

Citation: PVA Tepla, imec demonstrate 3D through-silicon via (TSV) void detection using GHz scanning acoustic microscopy (2013, January 17) retrieved 15 August 2025 from /news/2013-01-pva-tepla-imec-3d-through-silicon.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

SEMATECH Technologists Detail Process Advances to Accelerate 3D Manufacturing Readiness

0 shares

Feedback to editors