A genetic trigger adds branches to plants, could boost crop yields

When it comes to agriculture from branched plants, such as apple trees, the more branches that bear fruit, the better. But in the real world, there's a limit to the number of branches that plants make—a gene tends to put the brakes on this splitting process called shoot branching. Today in ACS Central Science, researchers reveal a chemical that can reverse this limitation, possibly leading to improved crop production.
Previous studies of a plant hormone that inhibits shoot branching resulted in the identification of a regulator gene called D14. Shinya Hagihara, Yuichiro Tsuchiya and colleagues reasoned that if they could inhibit this regulator, they could do the opposite and increase branching. Tsuchiya and Hagihara's teams developed a screen in which they could monitor the shoot branching activity based on whether a reporter chemical called Yoshimulactone Green (YLG) glowed green.
By screening a library of 800 compounds, the researchers found that 18 of them inhibited D14 by 70 percent or more. Of these, one called DL1 was particularly active and specific. This inhibitor could increase shoot branching in both a type of flower and in rice.
In preparation for DL1's use as a potential commercial agrochemical, the team is now testing how long the chemicals last in the soil and are investigating whether it is toxic to humans.
More information: Masahiko Yoshimura et al. Discovery of Shoot Branching Regulator Targeting Strigolactone Receptor DWARF14, ACS Central Science (2018).
Abstract
DWARF14 (D14) is a strigolactone receptor that plays a central role in suppression of shoot branching, and hence is a potential target to increase crop productions and biomass. Recently, we reported a fluorescence turn-on probe, Yoshimulactone Green (YLG), which generates a strong fluorescence upon the hydrolysis by D14-type strigolactone receptors. Herein, we applied a YLG-based in vitro assay to a high-throughput chemical screening and identified a novel small molecule DL1 as a potent inhibitor of D14. DL1 competes with endogenous strigolactones, thereby increasing the number of shoot branching in a model plant Arabidopsis as well as in rice. Thus, DL1 is expected to be useful not only as a tool to understand the biological roles of D14 receptors in plant growth and development, but also as a potent agrochemical to improve the crop yield.
Journal information: ACS Central Science
Provided by American Chemical Society