麻豆淫院

October 31, 2019

Nanotechnology breakthrough enables conversion of infrared light to energy

A close up of the film which combines nanocrystals and microlenses to capture infrared light and convert it to solar energy. Credit: KTH Royal Institute of Technology
× close
A close up of the film which combines nanocrystals and microlenses to capture infrared light and convert it to solar energy. Credit: KTH Royal Institute of Technology

Invisible infrared light accounts for half of all solar radiation on the Earth's surface, yet ordinary solar energy systems have limited ability in converting it to power. A breakthrough in research at KTH could change that.

A research team led by Hans 脜gren, professor in at KTH Royal Institute of Technology, has developed a film that can be applied on top of ordinary , which would enable them to use in energy conversion and increase efficiency by 10 percent or more.

"We have achieved a 10 percent increase in efficiency without yet optimizing the technology," 脜gren says. "With a little more work, we estimate that a 20 to 25 percent increase in efficiency could be achieved."

Photosensitive materials used in solar cells, such as the mineral perovskite, have a limited ability to respond to infrared light. The solution, developed with KTH researchers Haichun Liu and Qingyun Liu, was to combine nanocrystals with chains of microlenses.

"The ability of the microlenses to concentrate light allows the nanoparticles to convert the weak IR light radiation to visible useful for solar cells," 脜gren says.

The research progress has been patented, and presented in the scientific journal Nanoscale.

More information: Qingyun Liu et al. Microlens array enhanced upconversion luminescence at low excitation irradiance, Nanoscale (2019).

Journal information: Nanoscale

Load comments (0)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.