Âé¶¹ÒùÔº

June 19, 2020

Does intelligent life exist on other planets? Technosignatures may hold new clues

Scientists have discovered more than 4,000 planets outside our solar system. In the search for intelligent life, astrophysicists including the University of Rochester's Adam Frank are seeking the physical and chemical signatures that would indicate advanced technology. Credit: NASA/JPL-Caltech
× close
Scientists have discovered more than 4,000 planets outside our solar system. In the search for intelligent life, astrophysicists including the University of Rochester's Adam Frank are seeking the physical and chemical signatures that would indicate advanced technology. Credit: NASA/JPL-Caltech

In 1995 a pair of scientists discovered a planet outside our solar system orbiting a solar-type star. Since that finding—which won the scientists a portion of the 2019 Nobel Prize in Âé¶¹ÒùÔºics—researches have discovered more than 4,000 exoplanets, including some Earth-like planets that may have the potential to harbor life.

In order to detect if planets are harboring life, however, scientists must first determine what features indicate that life is (or once was) present.

Over the last decade, astronomers have expended great effort trying to find what traces of simple forms of life—known as "biosignatures"—might exist elsewhere in the universe. But what if an alien planet hosted intelligent life that built a technological ? Could there be "technosignatures" that a civilization on another world would create that could be seen from Earth? And, could these technosignatures be even easier to detect than biosignatures?

Adam Frank, a professor of physics and astronomy at the University of Rochester, has received a grant from NASA that will enable him to begin to answer these questions. The grant will fund his study of technosignatures—detectable signs of past or present technology used on other planets. This is the first NASA non-radio technosignature grant ever awarded and represents an exciting new direction for the search for extraterrestrial intelligence (SETI). The grant will allow Frank, along with collaborators Jacob-Haqq Misra from the international nonprofit organization Blue Marble Space, Manasvi Lingam from the Florida Institute of Technology, Avi Loeb from Harvard University, and Jason Wright from Pennsylvania State University, to produce the first entries in an online technosignature library.

Get free science updates with Science X Daily and Weekly Newsletters — to customize your preferences!

"SETI has always faced the challenge of figuring out where to look," Frank says. "Which stars do you point your telescope at and look for signals? Now we know where to look. We have thousands of exoplanets including in the habitable zone where life can form. The game has changed."

The nature of the search has changed as well. A civilization, by nature, will need to find a way to produce energy, and, Frank says, "there are only so many forms of energy in the universe. Aliens are not magic."

Although life may take many forms, it will always be based in the same physical and chemical principles that underlie the universe. The same connection holds for building a civilization; any technology that an alien civilization uses is going to be based on physics and chemistry. That means researchers can use what they've learned in Earth-bound labs to guide their thinking about what may have happened elsewhere in the universe.

"My hope is that, using this grant, we will quantify new ways to probe signs of alien technological civilizations that are similar or much more advanced to our own," says Loeb, the Frank B. Baird, Jr., Professor of Science at Harvard.

The researchers will begin the project by looking at two possible technosignatures that might indicate technological activity on another planet:

The information will be gathered in an online library of technosignatures that astrophysicists will be able to use as a comparative tool when gathering data.

"Our job is to say, 'this wavelength band is where you might see certain types of pollutants, this wavelength band is where you would see sunlight reflected off solar panels," Frank says. "This way astronomers observing a distant exoplanet will know where and what to look for if they're searching for technosignatures."

The work is a continuation of Frank's previous research on theoretical astrophysics and SETI, including to illustrate how a technologically advanced population and its planet might develop or collapse together; based on their ability to harness energy; and a asking if a previous, long-extinct on Earth would still be detectable today.

Load comments (35)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.