Âé¶¹ÒùÔº

December 19, 2022

Producing fertilizer without carbon emissions

Credit: CC0 Public Domain
× close
Credit: CC0 Public Domain

Researchers at ETH Zurich and the Carnegie Institution for Science have shown how nitrogen fertilizer could be produced more sustainably. This is necessary not only to protect the climate, but also to reduce dependence on imported natural gas and to increase food security.

Intensive agriculture is possible only if the soil is fertilized with nitrogen, phosphorus and potassium. While phosphorus and potassium can be mined as salts, nitrogen fertilizer has to be produced laboriously from nitrogen in the air and from hydrogen. And, the production of hydrogen is extremely energy-intensive, currently requiring large quantities of natural gas or—as in China—coal. Besides having a correspondingly large carbon footprint, nitrogen fertilizer production is vulnerable to price shocks on the fossil fuels markets.

Paolo Gabrielli, Senior Scientist at the Laboratory of Reliability and Risk Engineering at ETH Zurich, has collaborated with Lorenzo Rosa, Principal Investigator at Carnegie Institution for Science in Stanford, US, to investigate various carbon-neutral production methods for nitrogen fertilizer.

In a study published in the journal Environmental Research Letters, the two researchers conclude that a transition in nitrogen production is possible and that such a transition may also increase . However, alternative production methods have advantages and disadvantages. Specifically, the two researchers examined three alternatives:

Get free science updates with Science X Daily and Weekly Newsletters — to customize your preferences!

The scientists state that the key to success is likely to be a combination of all these approaches depending on the country and on specific local conditions and available resources. In any case, it is imperative that agriculture make a more efficient use of nitrogen fertilizers, as Rosa stresses, "Addressing problems like over-fertilization and food waste is also a way to reduce the need for fertilizer."

India and China at risk

In the study, the scientists also sought to identify the countries of the world in which food security is currently particularly at risk owing to their dependence on imports of nitrogen or natural gas. The following countries are particularly vulnerable to price shocks in the natural gas and nitrogen markets: India, Brazil, China, France, Turkey and Germany.

Decarbonizing fertilizer production would in many cases reduce this vulnerability and increase food security. At the very least, electrification via renewables or the use of biomass would reduce the dependence on natural gas imports. However, the researchers put this point into perspective: all carbon-neutral methods of producing nitrogen fertilizer are more energy intensive than the current method of using . In other words, they are still vulnerable to certain price shocks—not on natural gas markets directly, but perhaps on electricity markets.

Nitrogen producers facing change

Decarbonization is likely to change the line-up of countries that produce , the scientists point out in their study. As things stand, the largest nitrogen exporting nations are Russia, China, Egypt, Qatar and Saudi Arabia. Except for China, which has to import natural gas, all these countries can draw on their own natural gas reserves.

In the future, the countries that are likely to benefit from decarbonization are those that generate a lot of solar and wind power and also have sufficient reserves of land and water, such as Canada and the United States.

"There's no getting around the fact that we need to make agricultural demand for nitrogen more sustainable in the future, both for meeting climate targets and for food security reasons," Gabrielli says. War in Ukraine is affecting the global food market not only because the country normally exports a lot of grain, but also because the conflict has driven prices higher.

This in turn has caused prices for fertilizers to rise. Even so, some fertilizer producers are known to have ceased production, at least temporarily, because the exorbitant cost of gas makes production uneconomical for them.

More information: Lorenzo Rosa et al, Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions, Environmental Research Letters (2022).

Journal information: Environmental Research Letters

Provided by ETH Zurich

Load comments (7)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.