Why some quantum materials stall while others scale

Lisa Lock
scientific editor

Robert Egan
associate editor

People tend to think of quantum materials—whose properties arise from quantum mechanical effects—as exotic curiosities. But some quantum materials have become a ubiquitous part of our computer hard drives, TV screens, and medical devices. Still, the vast majority of quantum materials never accomplish much outside of the lab.
What makes certain quantum materials commercial successes and others commercially irrelevant? If researchers knew, they could direct their efforts toward more promising materials—a big deal since they may spend years studying a single material.
Now, MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their framework combines a material's quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors.
The researchers used their framework to evaluate more than 16,000 materials, finding that the materials with the highest quantum fluctuation in the centers of their electrons also tend to be more expensive and environmentally damaging. The researchers also identified a set of materials that achieve a balance between quantum functionality and sustainability for further study.
The team hopes their approach will help guide the development of more commercially viable quantum materials that could be used for next generation microelectronics, energy harvesting applications, medical diagnostics, and more. Their study is in the journal Materials Today.
"People studying quantum materials are very focused on their properties and quantum mechanics," says Mingda Li, associate professor of nuclear science and engineering and the senior author of the work. "For some reason, they have a natural resistance during fundamental materials research to thinking about the costs and other factors. Some told me they think those factors are too 'soft' or not related to science. But I think within 10 years, people will routinely be thinking about cost and environmental impact at every stage of development."
Materials with impact
Co-first authors Mouyang Cheng and Artittaya Boonkird say that materials science researchers often gravitate toward quantum materials with the most exotic quantum properties rather than the ones most likely to be used in products that change the world.
"Researchers don't always think about the costs or environmental impacts of the materials they study," Cheng says. "But those factors can make them impossible to do anything with."
Li and his collaborators wanted to help researchers focus on quantum materials with more potential to be adopted by industry. For this study, they developed methods for evaluating factors like the materials' price and environmental impact using their elements and common practices for mining and processing those elements. At the same time, they quantified the materials' level of "quantumness" using an AI model created by the same group last year, based on a concept proposed by MIT professor of physics Liang Fu, termed quantum weight.
"For a long time, it's been unclear how to quantify the quantumness of a material," Fu says. "Quantum weight is very useful for this purpose. Basically, the higher the quantum weight of a material, the more quantum it is."
The researchers focused on a class of quantum materials with exotic electronic properties known as topological materials, eventually assigning more than 16,000 materials scores on environmental impact, price, import resilience, and more.
For the first time, the researchers found a strong correlation between the material's quantum weight and how expensive and environmentally damaging it is.
"That's useful information because the industry really wants something very low-cost," says Ellan Spero, instructor from the Department of Materials Science and Engineering. "We know what we should be looking for: high quantum weight, low-cost materials. Very few materials being developed meet that criteria, and that likely explains why they don't scale to industry."
The researchers identified 200 environmentally sustainable materials and further refined the list down to 31 material candidates that achieved an optimal balance of quantum functionality and high-potential impact.
The researchers also found that several widely studied materials exhibit high environmental impact scores, indicating they will be hard to scale sustainably. "Considering the scalability of manufacturing and environmental availability and impact is critical to ensuring practical adoption of these materials in emerging technologies," says Associate Professor Farnaz Niroui of the Department of Electrical Engineering and Computer Science (EECS).
Guiding research
Many of the topological materials evaluated in the paper have never been synthesized, which limited the accuracy of the study's environmental and cost predictions. But the authors say the researchers are already working with companies to study some of the promising materials identified in the paper.
"We talked with people at semiconductor companies that said some of these materials were really interesting to them, and our chemist collaborators also identified some materials they find really interesting through this work," Professor Tomas Palacios from EECS says. "Now we want to experimentally study these cheaper topological materials to understand their performance better."
"Solar cells have an efficiency limit of 34%, but many topological materials have a theoretical limit of 89%. Plus, you can harvest energy across all electromagnetic bands, including our body heat," Fu says. "If we could reach those limits, you could easily charge your cell phone using body heat. These are performances that have been demonstrated in labs, but could never scale up. That's the kind of thing we're trying to push forward."
More information: Artittaya Boonkird et al, Are quantum materials economically and environmentally sustainable? Materials Today (2025).
Journal information: Materials Today
Provided by Massachusetts Institute of Technology
This story is republished courtesy of MIT News (), a popular site that covers news about MIT research, innovation and teaching.