COâ‚‚ as a raw material: Catalyst system makes climate gas usable for the chemical industry

Sadie Harley
scientific editor

Robert Egan
associate editor

Researchers from the Leibniz Institute for Catalysis (LIKAT), Ruhr University Bochum and Evonik Oxeno have developed a novel catalyst system that enables the use of the climate gas carbon dioxide (COâ‚‚) as a raw material for the chemical industry. This breakthrough allows for the more sustainable production of key products such as fragrances and building blocks for plastics.
The work is in the Journal of the American Chemical Society.
"Directly using COâ‚‚ as a feedstock is a milestone for sustainable chemistry on an industrial scale," says Prof. Dr. Robert Franke, Project Leader at Evonik Oxeno.
"Our collaboration with LIKAT and Ruhr University Bochum demonstrates how excellent fundamental research combined with industrial expertise can lead to innovative solutions for transforming the chemical industry."
Carbonylation is a central process in chemical manufacturing, in which olefins—a group of hydrocarbons—are converted into esters or acids using carbon monoxide. These substances are essential components of many everyday products. The process yields both basic chemicals—such as methyl methacrylate, the precursor for acrylic glass—and specialty chemicals like the fragrance valeric acid methyl ester.
The newly developed bimetallic catalyst system replaces toxic carbon monoxide with climate-friendly carbon dioxide and green hydrogen. In the presence of the transition metals iridium and palladium, along with a proven industrial phosphine ligand, olefins are directly converted into esters. The system shows high selectivity for linear products, which are particularly valued in industrial applications.
"This catalyst system is a great example of how targeted research can contribute to the defossilization of the chemical industry. COâ‚‚ is no longer seen as waste, but as a valuable resource," says Dr. Ralf Jackstell, Head of Research Group at LIKAT.
This opens up a new perspective: producing industrially relevant chemicals directly from climate gas COâ‚‚ and green hydrogen in a resource-efficient way.
More information: Mohamed Niyaz Vellala Syed Ali et al, Highly Selective Carbonylation of Olefins Using CO2 and H2, Journal of the American Chemical Society (2025).
Journal information: Journal of the American Chemical Society
Provided by Evonik Industries AG