Âé¶¹ÒùÔº - latest science and technology news stories / en-us Âé¶¹ÒùÔº internet news portal provides the latest news on science including: Âé¶¹ÒùÔºics, Nanotechnology, Life Sciences, Space Science, Earth Science, Environment, Health and Medicine. New regulatory protein of the neuronal cytoskeleton identified Nature has developed a unique structure as a scaffold for almost all nerve cells: the membrane-associated periodic skeleton (MPS). This specialized cytoskeletal structure is located below the cell membrane and consists of numerous proteins in a periodic arrangement. The MPS is involved in various cellular processes, such as inter- and intracellular signaling. To date, many proteins have been identified that interact with the MPS, but the mechanisms underlying its organization are not yet fully understood. /news/2025-04-regulatory-protein-neuronal-cytoskeleton.html Cell & Microbiology Molecular & Computational biology Wed, 23 Apr 2025 11:52:03 EDT news664627921 New process enhances thermoplastic blends with polylactic acid Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. /news/2024-11-thermoplastic-blends-polylactic-acid.html Polymers Analytical Chemistry Mon, 04 Nov 2024 13:01:03 EST news649947661 Intra-molecular distances in biomolecules measured optically with Ã…ngström precision A team led by physicists Steffen Sahl and Stefan Hell at the Max Planck Institute (MPI) for Multidisciplinary Sciences in Göttingen and the MPI for Medical Research in Heidelberg has succeeded in measuring distances within biomolecules using a light microscope, down to 1 nanometer and with Ã…ngström precision. /news/2024-10-intra-molecular-distances-biomolecules-optically.html Molecular & Computational biology Fri, 11 Oct 2024 10:03:15 EDT news647859789 Nanoscale imaging provides insights into 2D and phase-change materials Researchers from the University of California, Berkeley have developed cutting-edge nanoscale optical imaging techniques to provide unprecedented insights into the ultrafast carrier dynamics in advanced materials. /news/2024-07-nanoscale-imaging-insights-2d-phase.html Nanomaterials Wed, 31 Jul 2024 05:49:33 EDT news641623769 Small steps for electrons—big steps for the future? Ultrafast microscope reveals electron pathways in solar cells In the search for more efficient and sustainable energy generation methods, a class of materials called metal halide perovskites have shown great promise. In the few years since their discovery, novel solar cells based on these materials have already achieved efficiencies comparable to commercial silicon solar cells. /news/2024-07-small-electrons-big-future-ultrafast.html Optics & Photonics Wed, 17 Jul 2024 11:06:04 EDT news640433161 Âé¶¹ÒùÔºicists develop method to detect single-atom defects in semiconductors One of the challenges of cramming smarter and more powerful electronics into ever-shrinking devices is developing the tools and techniques to analyze the materials that make them up with increasingly intimate precision. /news/2024-07-physicists-method-atom-defects-semiconductors.html Condensed Matter Optics & Photonics Thu, 04 Jul 2024 05:00:01 EDT news639232201 AIM algorithm enhances super-resolution microscope images in real time When trying to measure molecular structures with nanometer precision, every bit of noise shows up in the data: someone walking past the microscope, tiny vibrations in the building and even the traffic outside. A new processing technique removes noise from optical microscope data in real time, allowing scientists to track individual molecules over 10 times more precisely than was possible before. /news/2024-05-aim-algorithm-super-resolution-microscope.html Molecular & Computational biology Wed, 29 May 2024 17:22:04 EDT news636222121 Âé¶¹ÒùÔºicists reach atomic-scale telegraphy with light In the 1880s Heinrich Hertz discovered that a spark jumping between two pieces of metal emits a flash of light—rapidly oscillating electromagnetic waves—which can be picked up by an antenna. To honor his groundbreaking work, the unit of frequency was named "Hertz" in 1930. Hertz's findings were later used by Guglielmo Marconi (Nobel Prize in Âé¶¹ÒùÔºics, 1909) to transmit information over long distances creating radio communication and revolutionizing wireless telegraphy—shaping the modern world until today. /news/2024-05-physicists-atomic-scale-telegraphy.html Optics & Photonics Quantum Âé¶¹ÒùÔºics Wed, 08 May 2024 11:00:01 EDT news634290649 Improved mid-infrared nanoscopy enables 30 times clearer view of the insides of bacteria A team at the University of Tokyo have constructed an improved mid-infrared microscope, enabling them to see the structures inside living bacteria at the nanometer scale. Mid-infrared microscopy is typically limited by its low resolution, especially when compared to other microscopy techniques. Their work has been published in Nature Photonics. /news/2024-04-mid-infrared-nanoscopy-enables-clearer.html Optics & Photonics Wed, 17 Apr 2024 11:03:03 EDT news632570578 New nano-microscope enables simultaneous measurement of nano-composite material properties The Korea Research Institute of Standards and Science (KRISS) has developed a hybrid nano-microscope capable of simultaneously measuring various nano-material properties. This nano-microscope is essential for researching the properties of nano-composite materials and is also suitable for commercialization. It is expected to promote the development of industries for related materials and equipment. /news/2024-03-nano-microscope-enables-simultaneous-composite.html Nanophysics Nanomaterials Wed, 06 Mar 2024 15:57:03 EST news628963021 The power to turn the invisible visible: A revolution in microscopy for live-cell imaging Imagine having a microscope that magnifies and enhances the tiniest details, revealing a world beyond the limits of conventional resolution. That's precisely what enhanced super-resolution radial fluctuations (eSRRF) brings to the scientific forefront—an upgraded super-resolution magic wand for microscopes. /news/2023-11-power-invisible-visible-revolution-microscopy.html Cell & Microbiology Biotechnology Tue, 14 Nov 2023 10:59:02 EST news619181941 How a pathogenic bacterium searches for food Bacteria whirl around in the mouths of most people, forming dental plaques and sometimes causing nasty gum infections. Treponema denticola might be a dangerous pathogen, but not much is known about this bacterium. It was up to Ariane Briegel and her research group to change that. The work is published in the journal mBio. /news/2023-08-pathogenic-bacterium-food.html Cell & Microbiology Molecular & Computational biology Fri, 25 Aug 2023 09:55:48 EDT news612176146 Researchers report broadband tip-enhanced nonlinear optical response in a plasmonic nanocavity Squeezing light beyond the diffraction limit and controlling the optical processes caused by nano-confined light are central issues of nanophotonics. In particular, localized and enhanced light at the plasmonic nanogaps in scanning probe microscopes provides us with a unique platform for obtaining site-specific optical information at the molecular/atomic scale. /news/2023-07-broadband-tip-enhanced-nonlinear-optical-response.html Nanophysics Mon, 31 Jul 2023 13:25:37 EDT news610028735 Zooming across time and space simultaneously with superresolution to understand how cells divide Cell division, or the process of how daughter cells emerge from a mother cell, is fundamental to biology. Every cell inherits the same protein and DNA building blocks that make up the cell it originally came from. Yet exactly how these molecular building blocks arrange themselves into new cells has remained a mystery. /news/2023-07-space-simultaneously-superresolution-cells.html Cell & Microbiology Biotechnology Sun, 23 Jul 2023 11:00:01 EDT news609087306 Shrinking light: Waveguiding scheme enables highly confined subnanometer optical fields Imagine shrinking light down to the size of a tiny water molecule, unlocking a world of quantum possibilities. This has been a long-held dream in the realms of light science and technology. Recent advancements have brought us closer to achieving this incredible feat, as researchers from Zhejiang University have made groundbreaking progress in confining light to subnanometer scales. /news/2023-07-waveguiding-scheme-enables-highly-confined.html Optics & Photonics Mon, 17 Jul 2023 15:11:07 EDT news608825463 Major advance in super-resolution fluorescence microscopy Scientists led by Nobel Laureate Stefan Hell at the Max Planck Institute for Medical Research in Heidelberg have developed a super-resolution microscope with a spatio-temporal precision of one nanometer per millisecond. An improved version of their recently introduced MINFLUX super-resolution microscopy allowed tiny movements of single proteins to be observed at an unprecedented level of detail: the stepping motion of the motor protein kinesin-1 as it walks along microtubules while consuming ATP. The work, published in Science, highlights the power of MINFLUX as a revolutionary new tool for observing nanometer-sized conformational changes in proteins. /news/2023-03-major-advance-super-resolution-fluorescence-microscopy.html Biotechnology Molecular & Computational biology Fri, 10 Mar 2023 10:01:57 EST news597664914 Researchers develop innovative tool for measuring electron dynamics in semiconductors At the heart of every mobile phone, laptop and autonomous vehicle is a tiny semiconductor whose properties and, ultimately, performance are determined by free electrons. Now, UC Berkeley researchers have developed a new way to measure these electrons that could lead to more energy-efficient semiconductor materials and electronics. /news/2023-02-tool-electron-dynamics-semiconductors.html Nanophysics Nanomaterials Mon, 20 Feb 2023 10:58:26 EST news596113101 Spin photonics to move forward with new anapole probe Topological nontrivial spin textures are intriguing in various physical systems, ranging from high energy to condensed matter physics. The magnetic Skyrmions formed by a swirling magnetization in magnetic materials have potential applications in high-density magnetic information storage and transfer. /news/2022-11-photonics-anapole-probe.html Optics & Photonics Fri, 04 Nov 2022 13:20:02 EDT news586786512 Super-resolution quantification of single small extracellular vesicles It has been commonly accepted that tumorigenesis and cancer progression constitute a multistep process. The most commonly used method for cancer diagnosis and prognosis to guide treatment decisions is based on a complex combination of imaging and invasive tissue biopsies. However, the methods are not always sensitive to early-stage cancer diagnosis. /news/2022-10-super-resolution-quantification-small-extracellular-vesicles.html Bio & Medicine Nanophysics Wed, 12 Oct 2022 09:51:12 EDT news584787070 Observing the difference in structural dynamics of 1 nm single-molecules at room temperature for the first time Chemists' long-held dream of observing the structural dynamics of a single molecule have been now been made possible. Single molecules sized about 1 nanometer exist in a volatile state under ambient conditions. Considering that the coronavirus, which is about 100 nm in size, spreads rapidly in the air shows how difficult it is to observe a single molecule. Recently, a Korean research team has discovered a reliable way to observe single molecules at room temperature by capping them with a thin insulating layer, like a blanket. /news/2022-09-difference-dynamics-nm-single-molecules-room.html Biochemistry Analytical Chemistry Thu, 15 Sep 2022 10:11:01 EDT news582455458 Microscopy technique reveals hidden nanostructures in cells and tissues Inside a living cell, proteins and other molecules are often tightly packed together. These dense clusters can be difficult to image because the fluorescent labels used to make them visible can't wedge themselves in between the molecules. /news/2022-08-microscopy-technique-reveals-hidden-nanostructures.html Bio & Medicine Mon, 29 Aug 2022 11:00:04 EDT news580986524 Frequency-domain STED microscopy for selective background noise suppression Nanoscopy describes the ability to see beyond the generally accepted optical limit of 200–300 nm. Stimulated emission depletion (STED) microscopy, developed by Stefan W. Hell and Jan Wichmann in 1994, and experimentally demonstrated by Hell and Thomas Klar in 1999, is a super-resolution technique for nanoscopy. STED microscopy has made considerable progress and is widely used in practical research. But its practical use involves some undesirable background noise, which negatively affects spatial resolution and image quality. In general, this noise comes from two signal sources: (i) fluorescence generated by re-excitation caused by ultrahigh light doses from the depletion beam; and (ii) residual fluorescence, due to insufficient depletion of the inhibition beam. /news/2022-07-frequency-domain-sted-microscopy-background-noise.html Optics & Photonics Wed, 06 Jul 2022 15:43:03 EDT news576340982 Light-controlled reactions at the nanoscale Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular bonds on nanoparticle surfaces have been observed in the past, nanoscopic optical control of surface reactions has not yet been achieved. An international team led by Dr. Boris Bergues and Prof. Matthias Kling at Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ) in collaboration with Stanford University has now closed this gap. The physicists determined for the first time the location of light-induced molecular reactions on the surface of isolated silicon dioxide nanoparticles using ultrashort laser pulses. /news/2022-05-light-controlled-reactions-nanoscale.html Optics & Photonics Thu, 19 May 2022 09:04:32 EDT news572169869 Research on the photonic crystal topological state beyond the optical diffraction limit A new publication from Opto-Electronic Advances considers research on photonic crystal topological states beyond the optical diffraction limit. /news/2022-05-photonic-crystal-topological-state-optical.html Optics & Photonics Thu, 05 May 2022 12:40:48 EDT news570973245 Analysis and containment of defect formation in Zn3P2 crystals: A nanoscale approach A study published in Nanoscale demonstrates that high-quality Zn3P2 crystals, free of interface defects, can be fabricated with a nanoscale approach. It consists in using selective area epitaxy to grow nanowires of Zn3P2, a material of interest for application in solar and photovoltaic cells. This work, coordinated by ICN2 group leader ICREA Prof. Jordi Arbiol, also employs state-of-the-art microscopy techniques and 3D simulations to thoroughly investigate the formation of differently-oriented structures within the nanowires. /news/2022-02-analysis-defect-formation-zn3p2-crystals.html Nanomaterials Tue, 01 Feb 2022 09:18:22 EST news562929498 Unraveling the interactions of individual sugar molecules with cells Sugars interact with the cell surface through sugar-binding proteins called lectins. These interactions play a fundamental role in many of the cell's biological processes. One important function is the modulation of the immune response towards an outside threat. In a recent Nature Chemical Biology paper, ICMS researchers team up with researchers from Leiden University to unravel the interactions of individual sugar molecules with cells using super-resolution microscopy. /news/2021-11-unraveling-interactions-individual-sugar-molecules.html Cell & Microbiology Biotechnology Tue, 23 Nov 2021 11:30:01 EST news556887490 Improved fabrication technique paves way for improved quantum devices Âé¶¹ÒùÔºicists and engineers have found a way to identify and address imperfections in materials for one of the most promising technologies in commercial quantum computing. /news/2021-09-fabrication-technique-paves-quantum-devices.html Quantum Âé¶¹ÒùÔºics Wed, 01 Sep 2021 10:41:46 EDT news549711704 A scattering-type scanning nearfield optical microscope probes materials at the nanoscale An MIT physicist has built a new instrument of interest to MIT researchers across a wide range of disciplines because it can quickly and relatively inexpensively determine a variety of important characteristics of a material at the nanoscale. It's capable of not only determining internal properties of a material, such as how that material's electrical or optical conductivity changes over exquisitely short distances, but also visualizing individual molecules, like proteins. /news/2021-07-scattering-type-scanning-nearfield-optical-microscope.html Optics & Photonics Quantum Âé¶¹ÒùÔºics Wed, 14 Jul 2021 08:21:22 EDT news545469678 Light-shrinking material lets ordinary microscope see in super resolution Electrical engineers at the University of California San Diego developed a technology that improves the resolution of an ordinary light microscope so that it can be used to directly observe finer structures and details in living cells. /news/2021-06-light-shrinking-material-ordinary-microscope-super.html General Âé¶¹ÒùÔºics Optics & Photonics Tue, 01 Jun 2021 03:18:03 EDT news541736270 Contact-free nanoscopy concept shows potential for investigating conductivity of materials A team of physicists from Germany, the .S. and the U.K. managed to observe the motion of electrons from one atomically thin layer into an adjacent one with nanoscale spatial resolution. The new contact-free nanoscopy concept, which shows great potential for investigations into conducting, nonconducting and superconducting materials, will be introduced in the new volume of the science journal Nature Photonics. /news/2021-05-contact-free-nanoscopy-concept-potential-materials.html Nanophysics Nanomaterials Thu, 13 May 2021 11:00:12 EDT news540024883