Dark spins light up
Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Âé¶¹ÒùÔºics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen atoms that sit at vacant sites in the diamond structure.
Such ‘vacancy’ centres have a long lifetime within the diamond host and could be used as the basis for a room-temperature quantum computer.
Because of the potential application as a bit of quantum information, the single magnetic spin (pointing up or down) associated with the extra electron of a nitrogen atom has featured in many different experiments.
The latest involves a room-temperature microscope that detects light emitted by a nitrogen vacancy centre. Through their precise control of the alignment of the magnetic field, the researchers can also detect local non-luminescing impurities that couple to the nitrogen vacancy centres.
The vacancy centres light the way to neighbouring 'dark' spins that normally would not be detected. These dark spins have a longer life-time than that of the vacancy atoms, and could be potentially more useful for applications involving quantum information processing.
Publication:
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
R. J. Epstein, F. M. Mendoza, Y. K. Kato, D. D. Awschalom
Nature Âé¶¹ÒùÔºics (16 Oct 2005) Letters
DOI: 10.1038/nphys141
Source: Nature