Key plant traits yield more sugar for biofuels
(麻豆淫院Org.com) -- New clues about plant structure are helping researchers from the Department of Energy?s BioEnergy Science Center narrow down a large collection of poplar tree candidates and identify winners for future use in biofuel production.
Led by Charles Wyman of the Bourns College of Engineering鈥檚 Center for Environmental Research and Technology at the University of California, Riverside, a research team from Oak Ridge National Laboratory, the National Renewable Energy Laboratory and UCR determined that the amount and composition of lignin in the plant鈥檚 cell wall interact in an unanticipated way to influence release of sugar from the plant.
The research was published as 鈥淟ignin content in natural Populus variants affects sugar release,鈥 in the Proceedings of the National Academy of Sciences.
Lignin serves as a major roadblock for biofuel production because it forms strong bonds with sugars and interferes with access to these carbohydrates, making it difficult to extract the plant鈥檚 sugars contained in cellulose and hemicellulose for conversion to transportation fuels.
鈥淭he real driver for bioenergy is how to get sugar as cheaply as possible from these recalcitrant materials,鈥 Wyman said. 鈥淲e鈥檙e looking for clues as to which traits in these poplar materials will lead to better sugar release.鈥
Using a high-throughput screening method, the BESC researchers rapidly analyzed an unprecedented number of poplar core samples in their search to understand the chemical factors that drive sugar yields.
The analysis revealed a correlation between one plant trait, the S/G ratio, and increased sugar yields. The ratio refers to the two main building blocks of lignin 鈥 syringyl and guaiacyl subunits.
Get free science updates with Science X Daily and Weekly Newsletters 鈥 to customize your preferences!
"The conventional wisdom is that high lignin contents are bad for sugar release," said lead author Michael Studer. "We unexpectedly found that this statement is only valid for low S/G ratios, while at high S/G ratios lignin does not negatively influence yields. However, replacement of carbohydrates with lignin reduces the maximum possible sugar release."
"Another interesting result was that the samples with the highest sugar release belonged to the group with average S/G ratios and lignin contents. This finding points to a need for deeper understanding of cell wall structure before plants can be rationally engineered for efficient biofuels production,鈥 Studer said.
The team鈥檚 study also pinpointed certain poplar samples that produced unusually high sugar yields with no pretreatment. Biofuel production typically requires various pretreatments, such as applying high temperature and pressure to the biomass. Reducing pretreatment would represent a substantial decrease in the price of liquid transportation fuels produced from lignocellulosic feedstocks like poplar.
鈥淚t's very enticing that several of the samples released more sugar than typical with no pretreatment,鈥 Wyman said.
Poplar trees, botanically known as Populus, represent the leading woody crop candidate for the production of biomass feedstocks for the creation of biofuels in the U.S. Naturally occurring selections of poplar trees contained wide variations in all observed traits, says Gerald Tuskan, an ORNL plant biologist and one of the co-leads of the study.
鈥淲e can mine this natural variability and find extreme poplar phenotypes that have value in increasing sugar yield,鈥 Tuskan said. 鈥淢oreover, these native individuals are adapted to local environments.鈥
From this work, superior poplar cultivars may soon be available for commercial testing and propagation, yielding plant materials that will contribute to reducing the nation鈥檚 dependence on fossil fuel based transportation fuels.
More information: %20html
Provided by University of California, Riverside