Zapping deadly bacteria using space technology

Zapping deadly bacteria using space technology
MicroPlaSter beta version of the atmospheric plasma device for chronic wound treatment. Credits: Max-Planck Institute for Extraterrestrial 麻豆淫院ics

Technology developed with ESA funding and drawing on long-running research aboard the International Space Station is opening up a new way to keep hospital patients safe from infections.

Using plasma 鈥� superheated, electrically charged gas 鈥� Max Planck Institute for Extraterrestrial 麻豆淫院ics director Gregor Morfill is developing ways to kill bacteria and viruses that can cause infections in hospitals.

鈥淲hat we have with plasma is the possibility to supplement our own immune system,鈥� says Dr. Morfill.  
 
The research began on the (ISS), where his ESA-funded physics experiments have been running since 2001.

The first was 鈥楶lasmakristall Experiment Nefedov鈥� in cooperation with Russian partners. Later, the PK-3 Plus and PK-4 experiments flew in 2006 as part of ESA鈥檚 Astrolab mission.

鈥淚t鈥檚 the longest-running space experiment in the history of human spaceflight,鈥� notes Dr. Morfill. More than two dozen astronauts and cosmonauts have operated the equipment aboard the ISS.

Zapping deadly bacteria using space technology
Laboratory prototype plasma device for sanitising hands. Credits: Max-Planck Institute for Extraterrestrial 麻豆淫院ics

The work in space led to the realisation that plasma might have very practical terrestrial applications 鈥� and Dr. Morfill turned to ESA's Technology Transfer Program to make it a reality.

Plasma dispensers can tackle a serious problem: in recent years, health experts have seen a dramatic rise in super-strains of bacteria that can survive the strongest antibiotics in medicine鈥檚 arsenal.

One, the multiple drug-resistant Staphylococcus aureus 鈥� perhaps better known as MRSA 鈥� kills 37 000 people each year in the EU alone. It affects more than 150 000 patients, resulting in extra in-hospital costs of 鈧�380 million for EU healthcare systems.

With help from ESA, Dr. Morfill鈥檚 team is now focusing on developing a system for hospitals, but cold plasma technology might one day also make it into our homes. Plasma could be used to disinfect toothbrushes and razors instead of UV light, which only sanitizes the surfaces it shines on. Plasma-charged gas would clean in hidden cracks and crevices, too.

At the other end of the spectrum, he says that plasma could be used as a 鈥榩lanetary protection system鈥� to clean satellites and planetary probes so they don鈥檛 carry terrestrial bacteria to distant planets.

The technology looks likely to do a lot of good. Bacteria are constantly evolving, developing resistance to the most commonly used antibiotics. Today, the best way to prevent the spread of bacterial infections is sanitation: regular hand washing between patients, for example, and systematic sanitising of floors, door handles, hospital curtains and anything else that might harbor infectious material.

Instead, Dr. Morfill is designing a system that makes use of 鈥檚 innate antibacterial properties to make disinfection easy and quick.

鈥淚t has many practical applications, from hand hygiene to food hygiene, disinfection of medical instruments, personal hygiene, even dentistry 鈥� this could be used in many, many fields.鈥�

Dr. Morfill adds that the research on the ISS and support from ESA has played an important role in turning physics experiments into life-saving technology here on Earth, both directly through ESA funding of a technology demonstrator project and through classic 鈥榯rickle down鈥� of the specific technology transfer.

鈥淓SA has been tremendously helpful 鈥� we鈥檙e 90% funded by ESA,鈥� Dr. Morfill concludes. 鈥淔unding for doing experimental work in the laboratory and in space has made it possible to spin off and start other research.鈥�

Provided by European Space Agency

Citation: Zapping deadly bacteria using space technology (2011, May 27) retrieved 25 May 2025 from /news/2011-05-zapping-deadly-bacteria-space-technology.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Hylas-1 in orbit brings Europe broadband from space

0 shares

Feedback to editors