麻豆淫院


NIST polishes method for creating tiny diamond machines

NIST polishes method for creating tiny diamond machines
This colorized electron microscope image reveals the boxy shape of the pits the NIST team etched into the diamond surface, exhibiting their smooth vertical sidewalls and flat bottom. The pits were between 1 and 72 micrometers in size. Credit: NIST

(麻豆淫院Org.com) -- Diamonds may be best known as a symbol of long-lasting love. But semiconductor makers are also hoping they'll pan out as key components of long-lasting micromachines if a new method developed at the National Institute of Standards and Technology (NIST) for carving these tough, capable crystals proves its worth. The method offers a precise way to engineer microscopic cuts in a diamond surface, yielding potential benefits in both measurement and technological fields.

By combining their own observations with background gleaned from , NIST semiconductor researchers have found a way to create unique features in diamond鈥攑otentially leading to improvements in nanometrology in short order, as it has allowed the team to make holes of precise shape in one of the hardest known substances. But beyond the creation of virtually indestructible nanorulers, the method could one day lead to the improvement of a class of electronic devices useful in cell phones, gyroscopes and medical implants.

Well known for making the hugely complex electronic microchips that run our laptops, the semiconductor industry has expanded its portfolio by fabricating tiny devices with moving parts. Constructed with substantially the same techniques as the electronic chips, these 鈥渕icro-electromechanical systems,鈥 or MEMS, are just a few micrometers in size. They can detect environmental changes such as heat, pressure and acceleration, potentially enabling them to form the basis of tiny sensors and actuators for a host of new devices. But designers must take care that tiny moving parts do not grind to a disastrous halt. One way to make the sliding parts last longer without breaking down is to make them from a tougher material than silicon.

鈥淒iamond may be the ideal substance for MEMS devices,鈥 says NIST鈥檚 Craig McGray. 鈥淚t can withstand extreme conditions, plus it鈥檚 able to vibrate at the very high frequencies that new consumer electronics demand. But it鈥檚 very hard, of course, and there hasn鈥檛 been a way to engineer it very precisely at small scales. We think our method can accomplish that.鈥

The method uses a chemical etching process to create cavities in the diamond surface. The cubic shape of a diamond crystal can be sliced in several ways鈥攁 fact jewelers take advantage of when creating facets on gemstones. The speed of the etching process depends on the orientation of the slice, occurring at a far slower rate in the direction of the cube鈥檚 鈥渇aces鈥濃攖hink of chopping the cube into smaller cubes鈥攁nd these face planes can be used as a sort of boundary where etching can be made to stop when desired. In their initial experiments, the team created cavities ranging in width from 1 to 72 micrometers, each with smooth vertical sidewalls and a flat bottom.
鈥淲e鈥檇 like to figure out how to optimize control of this process next,鈥 McGray says, 鈥渂ut some of the ways diamond behaved under the conditions we used were unexpected. We plan to explore some of these mysteries while we develop a prototype diamond MEMS device.鈥

More information: C.D. McGray, et al. Rectangular scale-similar etch pits in monocrystalline diamond. Diamond and Related Materials. Available online 22 August 2011, ISSN 0925-9635, 10.1016/j.diamond.2011.08.007

Citation: NIST polishes method for creating tiny diamond machines (2011, September 28) retrieved 23 June 2025 from /news/2011-09-nist-method-tiny-diamond-machines.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

NIST expert software 'lowers the stress' on materials problems

0 shares

Feedback to editors