麻豆淫院


Cyanobacterium demonstrates promise for biotechnology feedstock production

Harvard Medical School researchers have engineered a photosynthetic cyanobacterium to boost sugar production, as a first step towards potential commercial production of biofuels and other biotechnologically and industrially useful carbon compounds. As feedstock producers, cyanobacteria have advantages over plants, particularly land plants. They need little fertilizer. They don鈥檛 compete with food crops, because they can grow on marginal land. At commercial scale, the engineered cyanobacteria could potentially produce five times more sugar per acre than traditional crops, including sugarcane, says first author Daniel Ducat. The research is published in the April Applied and Environmental Microbiology.

Cyanobacteria were likely candidates for production because many freshwater species accumulate sucrose when subjected to salty environments, says Ducat, who is a postdoctoral researcher in Pamela Silver鈥檚 laboratory at the Harvard Medical School. They do this to mitigate osmotic pressure, which otherwise would dehydrate them, he explains. 鈥淲e hypothesized that this natural defense mechanism could be employed as a method to continuously produce sugar.鈥

But to maintain continuous , it was necessary to provide a mechanism to continuously expel the sugar. Mechanisms for moving ions and chemical compounds in or out of cells, against osmotic gradients abound among bacteria. Ducat et al. chose a sucrose permease, which is used by other bacteria to scavenge sucrose from the environment. Since the chemical gradients between the cell and the environment are reversed in cyanobacteria, 鈥渨e hypothesized that this same transporter might move sucrose out of the photosynthesizing bacteria,鈥 says Ducat.

Everything worked as expected, only better. The cyanobacteria expressing the sucrose transporter expelled sucrose at a constant rate so long as the cells were illuminated to provide energy for photosynthesis. Serendipitously, the rate of photosynthesis in the sugar-exporting cyanobacteria鈥攚hich belong to the freshwater species Synechococcus elongates鈥攚as actually higher than normal. 鈥淭hey display more activity in the enzymes involved in harvesting sunlight鈥攕pecifically the water-splitting complex, photosystem II鈥攁nd are capable of fixing carbon dioxide at higher rates than those cyanobacteria not exporting sucrose,鈥 says Ducat. 

Furthermore, 鈥淲e found that the levels of sucrose exported in these cyanobacteria could be modulated by both the concentration of salt in the culture and the genetic background of the cyanobacteria,鈥 says Ducat.

鈥淥ur results provide good proof-of-principle that cyanobacterial cultures could be used to produce biotechnology feedstocks with great efficiency,鈥 says Ducat. The researchers also showed that the sugars could support the growth of yeast, organisms used to produce biofuels and other valuable compounds. 鈥淭herefore, the sugars produced by cyanobacteria could be used by other microbes without the need to extensively process them,鈥 says Ducat鈥攊f the process can be scaled up.

That 鈥渋f鈥 is not inconsequential, says Ducat. 鈥淥ne of the major problems that some earlier scale-up efforts ran into when attempting to culture open raceways of algae were competing species of microbes and algae predators,鈥 he says. An alternative is to grow cyanobacteria in a semi-enclosed reactor. Cost then becomes an issue, and 鈥渢here aren鈥檛 a lot of great examples of large, inexpensive, fully enclosed photobioreactors,鈥 he says.

But if scale-up can be accomplished, the much greater efficiency of production for water-borne organisms is not all that surprising, especially to Ducat鈥檚 Harvard University colleague, forestry professor Michele Holbrook. In an article in the Harvard University alumni publication, Colloquy, several years ago, Holbrook explained that land-based photosynthesis seems wildly improbable when one examines the numbers. The concentration of carbon dioxide in the atmosphere, 3.8 hundredths of a percent, is far lower than in water. A plant has to hold huge quantities of air inside its leaves in order to obtain adequate CO2, but the extensive surfaces it uses for absorbing CO2 lose water fast, she told Colloquy. Thus, roughly 500 water molecules must cycle through the plant for every carbon dioxide that gets captured. 鈥淚f I turned the mass of my body into sunflower leaves, I鈥檇 have to drink two liters every 30 seconds,鈥 she said.

The results of this experiment raise unanticipated scientific questions, says Ducat. One would think that removal of the sucrose in the engineered cells would render them less fit, and thus less productive鈥攍ess able to produce more sugar as well as cell biomass. The fact that they can boost overall productivity suggests that wild-type cells of this species do not naturally fix carbon as rapidly as they are able.  Understanding the mechanisms behind this 鈥渕ay pave the way towards improving photosynthetic efficiencies generally,鈥 says Ducat. 鈥淲e are following up on the mechanisms that these cyanobacteria use to sense and upregulate their photosynthetic activity.

More information: D.C. Ducat, et al., 2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 8:2660-2668.

Provided by American Society for Microbiology

Citation: Cyanobacterium demonstrates promise for biotechnology feedstock production (2012, April 17) retrieved 23 June 2025 from /news/2012-04-cyanobacterium-biotechnology-feedstock-production.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Cotton thrips posed big problem for some South Plains farmers

0 shares

Feedback to editors