Âé¶¹ÒùÔº

November 6, 2019

132 grams to communicate with Mars

On behalf of the ESA, UCLouvain has developed antennas for the LaRa instrument that will go to Mars in 2020 to study the red planet's habitability. The originality of UCLouvain's concept: the antennas are produced from a single block of aluminium to achieve lightness (132g!), miniaturisation (hand-sized) and great resistance (particularly to day-night temperature variations of more than 200° C). Credit: UCLouvain
× close
On behalf of the ESA, UCLouvain has developed antennas for the LaRa instrument that will go to Mars in 2020 to study the red planet's habitability. The originality of UCLouvain's concept: the antennas are produced from a single block of aluminium to achieve lightness (132g!), miniaturisation (hand-sized) and great resistance (particularly to day-night temperature variations of more than 200° C). Credit: UCLouvain

Dust storms, ionising cosmic radiation, extreme cold at night ... Mars is not very hospitable! It's for these extreme conditions that the research team of Christophe Craeye, a professor at the UCLouvain Louvain School of Engineering, developed antennas for the 'LaRa' measuring instrument (Lander Radioscience ), which will go to Mars in 2020.

Prof. Craeye's laboratory has been producing antennas for more than 15 years, for various uses: road radars, magnetic resonance imaging, tracking objects equipped with radiofrequency identification (RFID) chips. The goal is always the same: retrieve remotely data sent by a measuring instrument (of a vehicle's speed, the body's internal functions, an object's or individual's location, etc.).

For this expertise, as part of the ExoMars mission, the European Space Agency (ESA) contacted (via Antwerp Space) UCLouvain. The mission's purpose is to study the rotation of Mars in order to learn more about the composition of its core and determine whether the planet was/will someday be habitable. How? By means of the LaRa instrument, which will communicate with Earth via radio waves. Thus the importance of antennas: they receive and emit . By measuring the Doppler effect—the difference between the frequencies of the waves emitted on the way (Earth-Mars) and those on the return (Mars-Earth)—the antennas will make it possible to better understand the movement of Mars and therefore the composition of its core. This is why LaRa is equipped with 100% UCLouvain-made antennas: a receiving antenna and two transmitting antennas (one of which is a backup).

Production requirements:

Get free science updates with Science X Daily and Weekly Newsletters — to customize your preferences!

The UCLouvain team's greatest feat: from concept to prototype, it created the antenna in a mere three months.

The advantages of UCLouvain's design:

What next? Applications are being developed in the field of satellite communications. And many industrial collaborations exist in fields beyond space and as varied as medical imaging, radio-frequency sensors, radar and telecommunications.

Load comments (3)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.