Âé¶¹ÒùÔº


Identifying a protective mechanism against the negative consequences of ammonium fertilization

fertilizer
Credit: CC0 Public Domain

Nitrogen (N) is an essential mineral element for plant development and is widely used in crop production. While synthetic nitrogen fertilizers significantly improve global crop yields, the use of nitrate-based nitrogen fertilizers bears the risk of nitrate leaching or nitrogen oxide emission. Since ammonium is less prone to leaching than nitrate and is energetically cheaper to produce, ammonium-based fertilizers are often used in agricultural crop production.

To increase fertilizer use efficiency, ammonium is often applied in localized fertilizer strips where it is present in very high concentrations. Although ammonium is a preferred inorganic N source for many plant species, excessive ammonium causes toxicity that results in inhibited root elongation. This is a consequence of ammonium triggering a variety of physiological and morphological processes, including changes in pH, , ion transport, redox metabolism, phytohormone homeostasis, and root system architecture.

The research team found first that ammonium toxicity is related to an iron-dependent formation of reactive oxygen species (ROS) inside the root, which suppresses root  elongation. "We then examined mutants of ammonium-induced genes in the roots and identified PDX1.1, a gene involved in the biosynthesis de novo of vitamin B6," explained Prof. Dr. Nicolaus von Wirén, Head of the Department of Âé¶¹ÒùÔºiology and Cell Biology at the IPK Leibniz Institute.

Pharmacological and genetic approaches, benefiting in particular from the collaboration with Prof. Dr. Teresa Fitzpatrick from the University of Geneva in Switzerland, then showed that non-phosphorylated forms of vitamin B6 suppressed H2O2 formation upon ammonium supply. "With PDX1.1-dependent vitamin B6 formation, our study was able to identify a natural protective mechanism that spatially coincides with ammonium-triggered H2O2 formation in inner root cells and thus has the potential to better adapt to -based fertilization strategies," explained Prof. Dr. Nicolaus von Wirén.

The research was published in Molecular Plant.

More information: Ying Liu et al, PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress, Molecular Plant (2022).

Journal information: Molecular Plant

Provided by Leibniz Institute of Plant Genetics and Crop Plant Research

Citation: Identifying a protective mechanism against the negative consequences of ammonium fertilization (2022, February 2) retrieved 3 May 2025 from /news/2022-02-mechanism-negative-consequences-ammonium-fertilization.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New study shows benefits of ammonium for pine root growth

35 shares

Feedback to editors