Âé¶¹ÒùÔº


Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science

Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science
A chondrite from the Viñales meteorite, which originated from the asteroid belt between Mars and Jupiter. Credit: ,

After a journey of seven years and nearly 4 billion miles, gently in the Utah desert on the morning of Sept. 24, 2023, with a precious payload. brought back a sample from the asteroid Bennu.

Roughly half a pound of material collected from the (77.6 billion kg) will help scientists learn about the , including whether include the chemical ingredients for life.

NASA's mission was budgeted at and will end up costing around for (255 g). But is this the most expensive material known? Not even close.

I'm a . I use moon and Mars rocks in my teaching and have a modest collection of meteorites. I marvel at the fact that I can hold in my hand something that is billions of years old from billions of miles away.

The cost of sample return

A handful of asteroid works out to $132 million , or $4.7 million per gram. That's about 70,000 times the , which has been in the range of $1,800 to $2,000 per ounce ($60 to $70 per gram) for the past few years.

The first extraterrestrial material returned to Earth came from the Apollo program. Between 1969 and 1972, six Apollo missions brought back 842 pounds (382 kg) of .

The for the Apollo program, adjusted for inflation, was $257 billion. These were a relative bargain at $19 million per ounce ($674 thousand per gram), and of course Apollo had additional value in demonstrating technologies for human spaceflight.

NASA is planning to bring samples back from Mars in the early 2030s to see if any contain traces of ancient life. The mission aims to return with a (450 g). The has already .

However, because the mission is complex, involving multiple robots and spacecraft. Bringing back the samples could run $11 billion, putting their cost at $690 million per ounce ($24 million per gram), five times the unit cost of the Bennu samples.

Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science
An iron meteorite. Credit: ,

Some space rocks are free

Some cost nothing. Almost 50 tons of free samples from the solar system every day. Most burn up in the atmosphere, but if they reach the ground , and most of those come from asteroids.

because it can be difficult to recognize and retrieve them. Rocks all look similar unless you're a geology expert.

Most meteorites are stony, , and they can be bought online for as little as $15 per ounce (50 cents per gram). Chondrites differ from normal rocks in containing that formed as molten droplets in space at the birth of the solar system 4.5 billion years ago.

are distinguished by a dark crust, caused by melting of the surface as they come through the atmosphere, and an internal pattern of long metallic crystals. They cost $50 per ounce ($1.77 per gram) or even higher. are stony- laced with the mineral olivine. When cut and polished, they have a translucent yellow-green color and can cost over $1,000 per ounce ($35 per gram).

More than a few meteorites have reached us from the moon and Mars. Close to 600 have been recognized as , and , weighing 4 pounds (1.8 kg), sold for a price that works out to be about $4,700 per ounce ($166 per gram).

About 175 meteorites are identified as . would cost about $11,000 per ounce ($388 per gram).

Researchers can figure out by using their landing trajectories to project their paths back to the asteroid belt or comparing their composition with different classes of asteroids. Experts can tell where moon and Mars rocks come from by their geology and mineralogy.

The limitation of these "free" samples is that there is no way to know where on the moon or Mars they came from, which limits their scientific usefulness. Also, they start to get contaminated as soon as they land on Earth, so it's hard to tell if any microbes within them are extraterrestrial.

At CERN’s ‘antimatter factory,’ scientists create antimatter in very small quantities.

Expensive elements and minerals

Some elements and minerals are expensive because they're scarce. Simple have low prices. Per ounce, carbon costs one-third of a cent, iron costs 1 cent, aluminum costs 56 cents, and even mercury is less than a dollar (per 100 grams, carbon costs $2.40, iron costs less than a cent and aluminum costs 19 cents). Silver is $14 per ounce (50 cents per gram), and gold, $1,900 per ounce ($67 per gram).

are extremely rare in nature and so difficult to create in the lab that they eclipse the price of NASA's Mars Sample Return. Polonium-209, the most expensive of these, costs $1.4 trillion per ounce ($49 billion per gram).

Gemstones can be expensive, too. are 10 times the , and are 100 times the price of gold.

Some diamonds have a boron impurity that gives them a . They're found in only a handful of mines worldwide, and at ($19 million per gram) they rival the cost of the upcoming Mars samples—an ounce is 142 carats, but very few gems are that large.

The is a tiny spherical "cage" of carbon with a trapped inside. The atom inside the cage is extremely stable, so can be used for timekeeping. are made of carbon material that may be used to create extremely accurate atomic clocks. They can cost $4 billion per ounce ($141 million per gram).

Most expensive of all

occurs in nature, but it's exceptionally rare because any time an antiparticle is created it quickly annihilates with a particle and produces radiation.

The can produces 10 million antiprotons per minute. That sounds like a lot, but it would take billions of years and cost a billion billion (1018) dollars to generate an ounce (3.5 x 1016 dollars per gram).

as envisaged by "Star Trek," which are powered by matter-antimatter annihilation, will have to wait.

Provided by The Conversation

This article is republished from under a Creative Commons license. Read the .The Conversation

Citation: Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science (2023, October 24) retrieved 4 June 2025 from /news/2023-10-space-asteroid-pricey-expensive-materials.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Osiris-Rex: NASA reveals evidence of water and carbon in sample delivered to Earth from an asteroid

1 shares

Feedback to editors