Âé¶¹ÒùÔº


This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

proofread

A new space mission may help physicists answer 'hairy' questions about black holes

A new space mission may help physicists answer hairy questions about black holes
An illustration of a supermassive black hole. Credit: NASA/JPL

Âé¶¹ÒùÔºicists consider black holes one of the most mysterious objects that exist. Ironically, they're also considered one of the simplest. For years, have been looking to prove that black holes are more complex than they seem. And a newly approved will help us with this hunt.

, a physicist currently at the University of Toronto, showed mathematically that a black hole containing the maximum charge it could hold—called an extremal charged black hole—would develop "hair" at its horizon. A is the boundary where anything that crosses it, even light, can't escape.

Black holes are massive, mysterious astronomical objects.

Aretakis' analysis was more of a using a highly simplified physical scenario, so it's not something scientists expect to observe astrophysically. But supercharged black holes might not be the only kind that could have hair.

Since astrophysical objects such as stars and planets are known to spin, scientists expect that , based on how they form. has shown that black holes do have spin, though researchers don't know what the typical spin value is for an astrophysical black hole.

Using , my team has recently in black holes that are spinning at the maximum rate. This hair has to do with the rate of change, or the gradient, of space-time's curvature at the horizon. We also discovered that a black hole wouldn't actually have to be maximally spinning to have hair, which is significant because these in nature.

Detecting and measuring hair

My team wanted to develop a way to potentially measure this hair—a new fixed property that might characterize a black hole beyond its mass, spin and charge. We started looking into how such a new property might leave a emitted from a fast-spinning black hole.

A is a tiny disturbance in space-time typically caused by violent astrophysical events in the universe. The collisions of compact astrophysical objects such as black holes and neutron stars emit strong gravitational waves. An international network of gravitational observatories, including the in the United States, routinely detects these waves.

A new space mission may help physicists answer hairy questions about black holes
The LISA spacecrafts observing gravitational waves from a distant source while orbiting the sun. Credit: Simon Barke/Univ. Florida, CC BY

Our recent studies suggest that one can measure these hairy attributes from gravitational wave data . Looking at the gravitational wave data offers an opportunity for a signature of sorts that could indicate whether the black hole has this type of hair.

and recent progress made by Som Bishoyi, a student on the team, are based on a blend of theoretical and computational models of fast-spinning black holes. Our findings have not been tested in the field yet or observed in real black holes out in space. But we hope that will soon change.

LISA gets a go-ahead

In January 2024, the European Space Agency formally adopted the space-based , or LISA, mission. LISA will look for gravitational waves, and the data from the mission could help my team with our hairy black hole questions.

Formal adoption means that the project to move to the construction phase, with a planned 2035 launch. LISA consists of configured in a perfect equilateral triangle that will trail behind the Earth around the sun. The spacecrafts will each be , and they will exchange to measure the distance between each other down to about a billionth of an inch.

LISA will detect gravitational waves from supermassive black holes that are millions or even billions of times more massive than our sun. It will build a map of the space-time around rotating black holes, which will help physicists understand how gravity works in the close vicinity of black holes to an unprecedented level of accuracy. Âé¶¹ÒùÔºicists hope that LISA will also be able to measure any hairy attributes that black holes might have.

With every day and LISA to offer a glimpse into the around , now is one of the most exciting times to be a black hole physicist.

Provided by The Conversation

This article is republished from under a Creative Commons license. Read the .The Conversation

Citation: A new space mission may help physicists answer 'hairy' questions about black holes (2024, May 16) retrieved 16 May 2025 from /news/2024-05-space-mission-physicists-hairy-black.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Extreme black holes have hair that can be combed

21 shares

Feedback to editors